PUBLICATIONS
* equal contribution, † graduate student mentee, ¥ undergraduate student mentee
2022
16. Mauro AA, Shah AA, Martin PR, Ghalambor CK. An Integrative perspective on the mechanistic basis of context-dependent species interactions. Integrative and Comparative Biology In press.
15. Woods HA, Legault G, Kingsolver JG, Pincebourde S, Shah AA, Larkin BG. Thermal ecology of ectotherms in plant-generated microclimates: aspen leaf miners are limited by cold but at risk from warming climates. Ecological Monographs In press.
14. Green MD, Tronstad LM, Giersch JJ, Shah AA, Fallon CE, Blevins E, Kai TR, Muhlfeld CC, Finn DS, Hotaling, S. Stoneflies in the genus Lednia (Plecoptera: Nemouridae): sentinels of climate change impacts on mountain stream biodiversity. Biodiversity & Conservation 8: 1-25.
2021
13. Frakes JI†, Birrell JH†, Shah AA, Woods HA. Water flow increases heat and hypoxia tolerance of an aquatic insect. Biology Letters 17: 2021004.
12. Hotaling S*, Shah AA*, Dillon ME, Giersch JJ, Tronstad LM, Finn DS, Kelley JL. Supercooling points of alpine stoneflies (Plecoptera: Nemouridae) vary across species, habitats, and populations in the Rocky Mountains. Western North American Naturalist 81(1): 54-62.
2020
11. Shah AA, Havird JC, Woods HA, Encalada A, Flecker AS, Funk WC, Guyasamin JC, Kondratieff B, Poff NL, Thomas SA, Zamudio K, Ghalambor CK. Temperature-dependence of metabolic rate in tropical and temperate aquatic insects: support for the Climate Variability Hypothesis in mayflies but not stoneflies. Global Change Biology 27(2): 297-311.
10. Birrell JH†, Shah AA, Hotaling S, Giersch JJ, Williamson CE, Jacobsen D, Woods HA. Insects in high elevation streams: life in extreme environments imperiled by climate change. Global Change Biology 26(12): 6667-6684.
9. Shah AA*, Bacmeister EM*¥, Rubalcaba JG, Ghalambor CK. Divergence and constraint in the thermal sensitivity of aquatic insect swimming performance. Current Zoology 66 (5): 555–564.
8. Hotaling S*, Shah AA*, Tronstad LM, Giersch JJ, Finn DS, Dillon ME, Kelley JL. Mountain stoneflies may tolerate warming streams: evidence from organismal physiology and gene expression. Global Change Biology 26 (10): 5524-5538.
7. Shah AA, Dillon ME, Hotaling S, Woods HA. High elevation insect communities face shifting ecological and evolutionary landscapes. Current Opinion in Insect Science 41: 1-6.
6. Havird JC, Neuwald JL, Shah AA, Mauro A, Marshall CA, Ghalambor CK. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: Why methodology matters. Functional Ecology 34: 1015-1028.
2019
5. Havird JC, Shah AA, Chicco AJ. Powerhouses in the cold: Mitochondrial function during thermal acclimation in montane mayflies. Philosophical Transactions of the Royal Society B 375(1790), 20190181.
2018
4. Polato NR*, Gill BA*, Shah AA*, Gray MM, Casner KL, Barthelet A, Messer PW, Simmons M, Guayasamin JM, Encalada AC, Kondratieff BC, Flecker AS, Thomas SA, Ghalambor CK, Poff NL, Funk WC, Zamudio KR. Narrow thermal tolerance and low dispersal drive diversification along tropical elevation gradients. Proceedings of the National Academy of Sciences 115(49): 12471-12476.
2017
3. Shah AA, Encalada A, Flecker AS, Funk WC, Gill BA, Guyasamin JC, Kondratieff B, Poff NL, Thomas SA, Zamudio K, Ghalambor CK. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology 31(11): 2118-2127.
2. Shah AA, Funk WC, Ghalambor CK. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integrative & Comparative Biology 57(5): 977-987.
Undergraduate research:
1. Shah AA, Ryan MJ, Bevilacqua E, Schlaepfer MA. 2010. Prior experience alters the behavioral response of prey to a nonnative predator. Journal of Herpetology 44: 185-192.
* equal contribution, † graduate student mentee, ¥ undergraduate student mentee
2022
16. Mauro AA, Shah AA, Martin PR, Ghalambor CK. An Integrative perspective on the mechanistic basis of context-dependent species interactions. Integrative and Comparative Biology In press.
15. Woods HA, Legault G, Kingsolver JG, Pincebourde S, Shah AA, Larkin BG. Thermal ecology of ectotherms in plant-generated microclimates: aspen leaf miners are limited by cold but at risk from warming climates. Ecological Monographs In press.
14. Green MD, Tronstad LM, Giersch JJ, Shah AA, Fallon CE, Blevins E, Kai TR, Muhlfeld CC, Finn DS, Hotaling, S. Stoneflies in the genus Lednia (Plecoptera: Nemouridae): sentinels of climate change impacts on mountain stream biodiversity. Biodiversity & Conservation 8: 1-25.
2021
13. Frakes JI†, Birrell JH†, Shah AA, Woods HA. Water flow increases heat and hypoxia tolerance of an aquatic insect. Biology Letters 17: 2021004.
12. Hotaling S*, Shah AA*, Dillon ME, Giersch JJ, Tronstad LM, Finn DS, Kelley JL. Supercooling points of alpine stoneflies (Plecoptera: Nemouridae) vary across species, habitats, and populations in the Rocky Mountains. Western North American Naturalist 81(1): 54-62.
2020
11. Shah AA, Havird JC, Woods HA, Encalada A, Flecker AS, Funk WC, Guyasamin JC, Kondratieff B, Poff NL, Thomas SA, Zamudio K, Ghalambor CK. Temperature-dependence of metabolic rate in tropical and temperate aquatic insects: support for the Climate Variability Hypothesis in mayflies but not stoneflies. Global Change Biology 27(2): 297-311.
10. Birrell JH†, Shah AA, Hotaling S, Giersch JJ, Williamson CE, Jacobsen D, Woods HA. Insects in high elevation streams: life in extreme environments imperiled by climate change. Global Change Biology 26(12): 6667-6684.
9. Shah AA*, Bacmeister EM*¥, Rubalcaba JG, Ghalambor CK. Divergence and constraint in the thermal sensitivity of aquatic insect swimming performance. Current Zoology 66 (5): 555–564.
8. Hotaling S*, Shah AA*, Tronstad LM, Giersch JJ, Finn DS, Dillon ME, Kelley JL. Mountain stoneflies may tolerate warming streams: evidence from organismal physiology and gene expression. Global Change Biology 26 (10): 5524-5538.
7. Shah AA, Dillon ME, Hotaling S, Woods HA. High elevation insect communities face shifting ecological and evolutionary landscapes. Current Opinion in Insect Science 41: 1-6.
6. Havird JC, Neuwald JL, Shah AA, Mauro A, Marshall CA, Ghalambor CK. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: Why methodology matters. Functional Ecology 34: 1015-1028.
2019
5. Havird JC, Shah AA, Chicco AJ. Powerhouses in the cold: Mitochondrial function during thermal acclimation in montane mayflies. Philosophical Transactions of the Royal Society B 375(1790), 20190181.
2018
4. Polato NR*, Gill BA*, Shah AA*, Gray MM, Casner KL, Barthelet A, Messer PW, Simmons M, Guayasamin JM, Encalada AC, Kondratieff BC, Flecker AS, Thomas SA, Ghalambor CK, Poff NL, Funk WC, Zamudio KR. Narrow thermal tolerance and low dispersal drive diversification along tropical elevation gradients. Proceedings of the National Academy of Sciences 115(49): 12471-12476.
2017
3. Shah AA, Encalada A, Flecker AS, Funk WC, Gill BA, Guyasamin JC, Kondratieff B, Poff NL, Thomas SA, Zamudio K, Ghalambor CK. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology 31(11): 2118-2127.
2. Shah AA, Funk WC, Ghalambor CK. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integrative & Comparative Biology 57(5): 977-987.
Undergraduate research:
1. Shah AA, Ryan MJ, Bevilacqua E, Schlaepfer MA. 2010. Prior experience alters the behavioral response of prey to a nonnative predator. Journal of Herpetology 44: 185-192.